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Abstract 
The task of handling non-rigid one-dimensional objects 

by a robot manipulation system is investigated. Espe-
cially, approaches to calculate motions with specific 
behavior in point contacts between the object and envi-
ronment are regarded. For single point contacts, motions 
based on generalized rotations solving the direct and 
inverse manipulation problem are investigated. The latter 
problem is additionally tackled by simple rotation and 
translation motions. For double and multiple point con-
tacts, motions based on Splines are suggested. In experi-
mental results with steel springs, the predicted and 
measured effect for each approach are compared. 

1. INTRODUCTION 
The manipulation of rigid objects by robots has been 

investigated for several decades, but relatively little work 
regarding the manipulation of non-rigid or deformable 
objects has been performed. A recent overview is pro-
vided in [Henrich00a]. Here, we focus on deformable one-
dimensional linear objects (DLOs), such as cables, wires, 
ropes, strings, beams, etc. This task has various applica-
tion fields, for example, hot-wire maintenance, cable form 
assembly, or production of control cabinets. The main 
problem of manipulating these objects is that they may 
change their shape during manipulation. 

To cope with this problem, one approach is to estimate 
the shape of the deformable objects by calculating an 
internal model and simulate the object behavior. A static 
model for objects and obstacles can be calculated in two 
[Hirai94] or three [Wakamatsu95] dimensions. An exten-
sion leads to a dynamic model of deformable linear ob-
jects [Wakamatsu97]. Plastic deformations and a faster 
approach for treating workpiece dynamics are given in 
[Remde99c]. However, it is not clear how to use the ob-
ject models to control the robot motion. For more com-
plex objects (inhomogeneous or non-isotrop), the 
characteristic material parameters are difficult to deter-
mine. Finally, the shape calculation can be very time 
consuming. 

Here, we take a simple analytical open-loop approach 
to predict the object's shape approximately. The approach 
is based on the formulation of contact states of the DLO 
in an environment of rigid convex objects [Henrich99a]. 
Here, we concentrate on edge/edge point contacts, since 
they occur in many assembly tasks, such as inserting a 

DLO into a tube, hooking a DLO over a beam, or estab-
lishing a new contact without losing the current ones. 
Additionally, the edge/edge point contacts are stable, thus, 
small movements will not lead to a change of the contact 
state. 

All robot motions are calculated with a minimal 
knowledge of the environment. This knowledge is pro-
vided by two characteristic points at the DLO. The con-
tact point is the location at the DLO, where the DLO is in 
contact with an obstacle. The effect point, is the location 
at the DLO, where the robot grips the DLO. Additionally, 
the DLO's tangent and normal vector in these points are 
regarded defining local coordinate systems. (In contact 
points, the normal vector is pointing away from the obsta-
cle.) From the environment, we need only to know the 
contact points, the tangents of the DLO at these points, 
and the position and orientation of the robot in the effect 
point.  

When manipulating deformable objects (especially 
DLOs), there are two different kind of problems. The first 
problem is the direct manipulation problem, where a 
robot motion in the effect point is specified by the user 
and the resulting motions of the DLO in the contact points 
are searched. The second is the inverse manipulation 
problem, where a motion of the DLO at the contact point 
is specified and the necessary motion of the robot in the 
effect point is searched. Note, that these problems exist 
only for deformable objects. In contrast to the behaviour 
of rigid objects, with deformable objects, the motions of 
robot and object are not necessarily identical, since the 
object may change its shape. Whenever deformable ob-
jects need to be handled in real applications, either the 
direct and/or the inverse manipulation problem need to be 
solved. 

To cut down the complexity of these two problems, we 
distinguish qualitatively different DLO motion types at 
the contact point [Henrich99a]. The motions are defined 
in a projection of the objects onto a 2-dimensional plane 
orthogonal to the obstacle’s edge (see Fig. 1). The rotate 
or slide motion does not change the contact state but 
changes the orientation or position of the DLO respec-
tively. Additionally, the slide motion is subdivided into 
left slide (S–), right slide (S+) and no slide (S0). The rota-
tion motion is subdivided into negative or clock-wise 
rotation (R–), positive or counter-clockwise rotation (R+), 
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and no rotation (R0). Note, that the slide and rotation 
motions are independently and that all possible DLO 
motions at a contact point can be composed with these 
two motion types. 

Additionally, we assume, that the force necessary to 
deform the DLO is greater than the gravity force (DLOs 
in class E– of [Henrich99a]). 

In this paper, we use the basic motion types to solve 
the direct and inverse manipulation problem of DLOs in 
point contacts. To do this, we have to come up with an 
answer to the following questions: How can DLOs with a 
single contact point be manipulated (Section 2)? What 
algorithms solve the direct (Section 2.1) and inverse (Sec-
tion 2.2 and 2.3) motion problem? How can the solution 
to the inverse problem be extended to double contacts 
(Section 3)? What is the general formulation for multiple 
contact points (Section 4)? 

2. SINGLE POINT CONTACTS  
In this section, we first give an algorithm to solve the 

direct manipulation problem (CP-Move) and show two 
experimental results. Second, we give two algorithms to 
solve the inverse manipulation problem (CP-Move and 
RT-Move) and perform one experiment to show the pos-
sible movements. 

2.1 Direct manipulation problem 
For the first approach we assume the set-up of Fig. 1. 

The contact point c of the DLO with the obstacle and the 
effect point e are given. Also the tangent T of the DLO in 
c is known. The DLO may be bent, but the straight line 
from c to e has to be more or less parallel with the tangent 
T. 

T

ce

 
Fig. 1: The basic set-up for a DLO with a single contact 
point c with the obstacle and the tangent T in c. The effect 
point e (including position and orientation) is moved by the 
robot. 

In general, an arbitrary object can be moved in space 
by translations, rotations, or any combination of these 
movements. Rotations can be characterized by the rotation 
centre and rotation angle. Translations can be viewed as a 
special case of generalized rotations with the rotation 
centres lying in infinity perpendicular to the direction of 
the translation. Thus, it is sufficient to regard only (gener-
alized) rotations of the effect point e and translations can 
be omitted. 

To solve the direct manipulation problem, we are inter-
ested in the resulting DLO motion in c (in qualitative 
terms of rotation R and slide S), for a given generalized 
rotation of the effect point e. To predict the resulting DLO 

motion, we perform a more general version of the experi-
ments in [Henrich99a] by taking curved DLOs. Therefore, 
a 1cm x 1cm grid is placed into the working area with a 
DLO in single contact with an obstacle. Every grid point 
represents a possible rotation centre for e. For every rota-
tion centre, the resulting qualitative DLO motion (R and 
S) is observed in c. The observed DLO motions form 
clusters (areas) of rotation centres with identical DLO 
motions. For one specific set-up these areas are shown in 
Fig. 2. Note, that especially the borders of areas have been 
explored in the figure. 

We have performed several experiments of this type 
while varying different parameters of the set-up. The 
varied parameters include the DLO material, the distance 
between c and e, and the curvature of the DLO. All these 
experiments result in similar rotation centre areas. The 
boarders of these areas can be approximated in a general 
way by three characteristic lines of the set-up. These lines 
are the DLO normal N, the line S0 through e and c, and a 
line R0 perpendicular to S0 intersecting S0 between e and c. 
Although, we could not quantify the exact intersection 
point of R0 and S0 for all DLO materials in a general rule, 
the proportion between e and c stays the same for one 
DLO. Thus, for a particular DLO, the area boarders are 
approximated quite well by N, S0, R0 even when other set-
up parameters are varied. 

Now, the algorithm CP-Move can be formulated as fol-
lows. For a particular DLO, determine the (constant) 
proportion of the intersection point. Then, for a given set-
up, calculate the location of the lines S0, R0 using  e, c, and 
N. For any given robot motion in e, calculate the corre-
sponding general rotation centre. Calculate the DLO 
motion area in which the rotation centre is located. Output 
the predicted qualitative DLO motion, which is deter-
mined by the specific area of the rotation centre. 
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Fig. 2: Different rotation centres and the resulting motion in 
contact point c for a clockwise rotation of effect point e 
lying to the left of c in 20cm distance for a curved DLO. 
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2.2 Inverse manipulation problem solved by CP-Move 
To solve the inverse manipulation problem, we can use 

the DLO motion areas provided by N, S0, R0 (Section 2.1) 
and determine for a desired DLO motion a rotation centre 
in the corresponding area. The goal is to find those centres 
that have the greatest effect in c. A good rotation centre 
for one particular DLO motion is in most cases the one 
that has the largest average distance to the other areas. 
Experimental results show that for the motion type S+R− 
or S−R+, the best rotation centre is not located in the infi-
nite. Furthermore, there is a motion R0S0 which has only 
one rotation centre; the intersection point of the R0 and S0 
line. The motion R0S0 implies that there is no DLO motion 
in c, but the DLO is deformed so that it does not make a 
rotation or slide. 

Problems will occur if one of the set-up assumptions no 
longer holds true. For example, if a rotation of the DLO 
results in a deformation, then the straight line S0 is sloping 
too (see Fig. 2). This  changes the boarders of the areas 
and the rotation centre may move in a different area. So, 
the resulting effect is different from the desired one. An-
other problem is the rotation of the DLO at the contact 
point c. With its rotation, the rotation centre may also 
move to another area. As a result, CP-Move is only able 
to perform small movements correctly. 

Additionally, it is not possible to quantify the amount 
of the movement. A rotation in the contact point c can be 
reversed (for example, R+ by R–), but the DLO deforms 
more and more if these two movements are repeated 
several times. After a number of iterations, the starting 
point cannot be reached again. 
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Fig. 3: Experimental results for CP-Move with a single 
contact point c, performing first a positive rotation (R+), 
then a negative rotation (R−) of the DLO. Angle α is the 
rotation of the DLO in the contact point c after step i. Dis-
tance s is the undesired slide of the DLO in c. The value of 
angle β indicates the rotation for each step. 

To demonstrate the properties of CP-Move, we use a 
steel ruler as DLO (as in all of our experiments). This 
ruler has the advantage of being independent to gravity 
and it meets our general assumption of being unbent if no 
force is influencing it. Furthermore, only the 2D projec-
tion of the environment is regarded. First, we demonstrate 

a positive rotation (R+) of about 25° followed by a nega-
tive rotation of about the same amount (see Fig. 3) and 
second, a negative rotation (R–) of circa 25° and the same 
amount backwards (see Fig. 4). The set-up of the experi-
ment is the same as shown in Fig. 1. The first experiment 
shows that the amount of rotation resulting from every 
step is different for positive and negative rotations. Thus, 
the way back requires 17 steps instead of 14. Also, there 
is a unwanted slide of the DLO at the contact point. Re-
lated to the steps needed to obtain the desired angle, the 
second experiment is symmetric to the first one – the 
positive rotation is stronger than the negative rotation. 
There are 19 steps required for the first part and 17 steps 
for the second part to reach the starting rotation angle of 
the DLO at the contact point c. However, the total of the 
undesired translation increases slowly in the first part and 
then much faster in the second part of the movement. 

As a result, this algorithm gives us the ability to handle 
curved DLOs. Because of the counter clockwise rotations 
of the effect point, the movements cannot made undone 
and the curvature of the DLO will increase till no more 
movements are possible. 
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Fig. 4: Experimental set-up as in Fig. 3, but with first a 
negative rotation (R−), then a positive rotation (R+) of the 
DLO. 

2.3 Inverse manipulation problem solved by RT-Move 
Due to the above problems, we come up with another 

algorithm, for solving the inverse manipulation problem, 
called RT-Move. We make almost the same assumptions 
as we did with CP-Move. As in Fig. 1, the tangent T must 
be known. Additionally, the contact point c of the DLO 
with the obstacle and the effect point e must be given. The 
DLO may be bent. To best perform the movements, there 
should be a small contact pressure at the contact point c. 

RT-Move is an approach to solve the inverse manipula-
tion problem for DLOs at point contact. The desired rota-
tion and the slide at the contact point c are given and with 
that information, the necessary robot motion of the effect 
point e is calculated. To perform a translation in positive 
direction (S+), the effect point e is moved in the direction 
of the tangent T (see Fig. 5). It is possible to specify the 
amount of the translation and with that translation there is 
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no rotation at the contact point c. Additionally, we need to 
calculate the rotation in such a manner that it does not 
include any translation portion. This requirement is met 
by rotating the effect point e around c (see Fig. 5). While 
moving along that circle, the distance between c and e 
remains unchanged and therefore there is no translation. 
Because those two movements, rotation and translation, 
are independent, it is possible to combine them into one 
single movement. 

T’

c

e’’

Te e’

 
Fig. 5: DLO with tangent T in contact point c. The effect 
point e is shifted to e’ or rotated around c to e’’. 

With RT-Move it is possible to specify the exact 
amount of translation and rotation the DLO should per-
form in the contact point c. The degree of the deformation 
will not change within the motions. Additionally, all 
movements have their inverse counterpart. For example, a 
positive rotation can be reversed with a negative rotation 
of the same amount. 
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Fig. 6: Experimental results for RT-Move with a single 
contact point c, performing first a negative rotation (R−), 
then a positive rotation (R+) of the DLO. The angle α is the 
desired rotation of the DLO in the contact point c after step 
i, and the angle β indicates the amount of rotation after 
every step. The distance s is the undesired slide of the 
DLO in c. 

The set-up of the experiment and the experiment itself 
differ slightly from those used for CP-Move (see Fig. 6). 
At the starting position, the DLO has already been rotated 
by 20°. Then there are 19 single negative rotations (R–) of 
3° each. After those 19 steps the way back will be made 
with 19 positive rotations (R+), again of 3° each. After 

those movements have been performed, the effect point e 
is the same again (±0.3mm). The measured undesired 
slide is very small and will fluctuate within the accuracy 
of the measurement. 

Thus, for the inverse manipulation problem in point 
contacts, RT-Move has the same capability as CP-Move, 
but it is able to undo the movements without changing the 
curvature of the DLO. Unfortunately, RT-Move does not 
solve the direct manipulation problem, since the robot 
motions dependent on the contact point c.   

3. DOUBLE POINT CONTACTS  
 To manipulate DLOs with two contact points, we in-

troduce an approach based on Splines, called S-Move. For 
this, the two contact points c1 and c2 and the tangents T1 
and T2 of the DLO at these contact points are assumed to 
be known (see Fig. 7). The effect point e is located some-
where between c1 and c2. If this is not the case, the parts 
of the DLO outside c1 and c2 are approximated the linear 
extrapolation of the corresponding tangent vector in c1 
and c2, respectively. 

T

c2

e’

c1

T1 T2

e

 
Fig. 7: DLO with two contact points c1, c2 and correspond-
ing tangents T1, T2 after the effect point e has been moved 
e’. 

To describe S-Move with two point contacts, we intro-
duce the normal vector Ni for the two contact points ci, i = 
1,2. The normal Ni = Ti x Ei is orthogonal to the DLO 
tangent Ti at ci and to the contact edge Ei. Additionally, 
we assume that the vector Ni is directed away from the 
obstacle’s surface. If we regard Ni, there are only two 
different interesting cases for the general set-up of two 
contact points: (1) N1 in the same direction then N2 (Fig. 
7) and (2) N1 in the opposite direction then N2 (Fig. 8). All 
other angles between N1 and N2 are similar to one of these 
two cases. In Case 1, the possible movement of e that 
changes the tangents T1 and T2 but does not lose a contact 
point is a movement of e in the direction opposite to N1 
and N2. In Case 2, a possible movement of e that rotates 
T1 and T2 of the DLO at c1 and c2 without losing a contact 
point is the rotation of e around itself.  

If we regard all possible combinations of DLO motion 
at ci, we recognize that it is impossible to make a rotation 
or slide at one contact point without causing an (unde-
sired) motion at the other contact point. Because of this, 
we are unable to calculate one motion of e that results 
exactly in the desired motion at both contact points. To 
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solve this problem, our approach is to approximate the 
DLO with a Spline of third order and to treat rotation and 
slide in ci separately. 

To obtain the desired rotation in ci, we calculate the 
Spline based on its four variables. These variables deter-
mined by the two contact points and the tangents at the 
two contact points. The tangents T1 and T2 are selected 
according to the desired DLO rotation at c1 and c2. By 
calculating the shape of the Spline, we can determine the 
new effect point e’. Based on the positions and Spline 
tangents of e and e', we can determine the necessary trans-
lation and rotation the robot has to perform to obtain the 
desired DLO rotation at c1 and c2. 

To obtain the desired slides in ci, a translation of e is 
calculated by the vector sum of all slide vectors ti. (The ti 
are pointing in the direction of Ti and having the length of 
the desired slide at ci.) The length of the resulting vector 
is divided by the number of contact points (here two). The 
resulting vector is the best possible translation of e to 
perform the desired slides at ci. 

It is possible to calculate whether the specified motion 
will keep or lose one or more contact points. The normal 
vector of the Spline at a contact point should point away 
from the obstacle (same direction as Ni). The direction of 
the normal vector is calculated by the second derivative. If 
the second derivative is positive, the Spline is left bent at 
the contact point. Therefore, the tangent T must be rotated 
counter clockwise. If it is negative, the tangent must be 
rotated clockwise. 

Tc2

c1

T1

e

T2

 
Fig. 8: DLO with two contact points c1, c2 and correspond-
ing tangents T1, T2 after the effect point e has been rotated 
around itself. 

S-Move is able to perform the given motions in given 
quantified amounts. It is possible to specify the exact 
amount of translation and rotation the DLO should un-
dergo at the contact points c1 and c2. It is most likely that 
the DLO is deformed during the motions. An advantage is 
that all movements can be reversed. For example, a posi-
tive rotation at a certain contact point can be reversed with 
a negative rotation of the equal amount at the same con-
tact point. A disadvantage is that not all motions are per-
formed in exactly the desired manner (see Fig. 7). For 
example even if a rotation at c1 and none at c2 is re-
quested, there will be also a rotation to c2. 

For each of the above cases, we show the correspond-
ing experiments, with one set-up like Fig. 7 (Case 1) and 

one such as in Fig. 8 (Case 2). 
In the first experiment, the motion of the DLO is at the 

contact point c1: R− and at c2: R+. At both contact points, 
the given amount of the rotation is 3° for every step. After 
rotating 27° (9 steps), the inverse motion (at c1: R+ and at 
c2: R−) is carried out. Fig. 9 shows the results of the 
movement. The motion is in every step a few degrees 
smaller, because of the lag after the first step. Because the 
motions at two contact points are reversible, the graph is 
symmetric. The translation in- and decreases steadily. 
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Fig. 9: Experimental results for S-Move for a negative 
rotation (R−) at contact point c1 and a positive rotation (R+) 
at c2. The angle α is the desired rotation of the DLO at the 
contact point c after step i, and the angle β indicates the 
amount of rotation after every step. The distance s (s1 = s2) 
indicates the undesired slide of the DLO at c1 and c2. Here, 
s1 = s2 hold true, since the experiment is symmetrical. 
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Fig. 10: Experimental set-up as in Fig. 9, but for negative 
rotations (R−) at contact points c1, c2. 

In the second experiment, the movement of the DLO is 
R− at c1 and also R− at c2. At both contact points, the 
given amount of the rotation is 3° for every step. After 
rotating 30° (10 steps) the inverse motion (at c1: R+ and at 
c2: R+) is performed. Fig. 10 shows that the resulting 
motion is about half the size of the desired motion. This is 
because of the material of the DLO. The steel ruler is too 
stiff to be approximated as a typical Spline. 

4. MULTIPLE POINT CONTACTS  
To solve the inverse manipulation problem for multiple 
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contact points (number n > 2), we use the same concept as 
presented in the previous section. The effect point e is 
located between two contact points ci-1, ci, 2 < i ≤ n and 
the DLO has a small contact pressure at every contact 
point. The positions of all contact points ci are known. In 
addition, we know at least two tangents Tj, Tk of the DLO 
at two arbitrary contact points cj, ck (1 ≤ j ≤ n, 1 ≤ k ≤ n, j 
≠ k). The other tangents Ti (1 ≤ i ≤ n, j ≠ i ≠ k) can be 
derived from the condition that the tangents and curva-
tures of two neighbouring Splines are identical. 

Between two neighbouring contact points ci-1 and ci, 2 
< i ≤ n, the shape of the DLO is approximated by a Spline 
(see Fig. 11). Since we know two conditions of every 
Spline (ci-1 and ci), we use the two given tangents to 
calculate all Splines. If we have not enough conditions 
available for one Spline, we need to calculate the second 
derivative at the neighbouring contact points and use this 
as additional condition. This is done with an equation 
system. For every Spline, we have four unknown three 
dimensional variables (twelve unknown variables) and 
with the two given tangents twelve equations for every 
Spline. With that information, we build a 12n x 12n - 
matrix A and one 12n dimensional vector b. The result of 
the equation system is stored in 12n dimensional result 
vector  x. 

Anxn xn = bn 

 This equation system can be solved with a Gauss algo-
rithm. From this, we receive the vector x with the neces-
sary information about the Splines.  

cn

T
ci

ci-1

Ti-1

e

Ti

Tn

...

 
Fig. 11: DLO with multiple contact points ci, corresponding 
tangents Ti (1≤ i ≤n), and effect point e. 

The motion of the robot can be calculated from the 
Spline using the motion of the effect point at the Spline. 
This is similar to the motion calculation at two contact 
points and is therefore not further explained in this sec-
tion. 

To calculate the loss of a contact point, the normal vec-
tor Ni = Ti x Ni of every contact point ci is used to detect 
whether contact is lost at ci during the given motion (see 
Section 3). The movement of the effect point e for rota-
tion and translation is performed in the same way as in the 
previous section. 

In the experiment, we use the set-up shown in Fig. 13.  
Please note that the DLO is fixed to c3 so it could not lose 
that contact point no matter which movement is done in e. 
The movement is specified by the tangents T1 and T3 at c1 
and c3. In Fig. 12, the measured rotations of the tangents 
Ti (α, β and γ for c1, c2 and c3) and the calculated rotations 

(by S-Move) of the tangents Ti' are shown (α', β' and γ' 
for c1, c2 and c3). The amount of rotation at c1 (α) and c3 
(γ) is about half of the desired value (like Fig. 10 with two 
contact points). The amount of rotation at c2 (β) is shifted 
for the constant amount of about 20° compared to the 
desired rotation. This shift is because of the used standard 
Spline. Other kinds of Splines are able to calculate that 
amount more precisely. 

 

-80 

-60 

-40 

-20 

0 

20 

1 2 3 4 5 6 7 8 9 10 11 12 

α β γ 
α ' β ' γ ' 

[°] 

 
Fig. 12: Experimental results for three contact points and 
given rotations of α, γ at c1,c3. The angles α, β and γ (for c1, 
c2 and c3) show the measured rotation, and α', β' and γ' 
indicates the calculated rotations by S-Move. 

It is possible to specify the amount of DLO motion at 
every contact point. But the more tangents are given the 
more difficult it will be to deform the DLO in the desired 
way. Because, with every additional specified tangent 
there are three more equations. As a result, there are more 
equations than unknown variables. This equation system 
is still solvable, but it describes a DLO needing more than 
one effect point to change its shape in the specified man-
ner. 

A Spline calculated by S-Move and a real DLO are 
shown in Fig. 13. The figure shows the results of the 
experiment with a direct shape comparison. The calcu-
lated shape is only a rough approximation of the real 
DLO. Thus, the usage of weighted Splines or minimal 
energy Splines should be considered if a higher accuracy 
is needed to perform the given tasks. 

c1 c2 c3

e

 
Fig. 13: Shape comparison of a DLO calculated by S-
Move (T1 = (0,100,-100), T2 = (0,100, -1), thick line) with a 
real DLO. 
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For multiple contact points, also weighted Splines, 
Splines under tension, and normalized Splines under 
tension are investigated in the same way as for standard 
Splines. These Splines are more accurate and more stable 
regarding degradation. Furthermore, the computing time 
is the smaller the more accurate these Splines are, but the 
mathematical formulations become more complex too. 
For details see [Schmidt01] and for a comparison see Fig. 
14. 

 standard-
Splines 

weighted 
Splines 

Splines 
under 
tension 

normalized 
Splines 
under 
tension 

number of 
tangents 2 2 2 m =0, ..., n 

specified tan-
gent position any desired near effect 

point 
near effect 

point any desired 

number of 
parameters n+2 2n+1 2n 3n-3+m 

effect point 
position 

not re-
garded 

influences 
damping 

influences 
damping 

influences 
damping 

optimal num-
ber of contact 

points* 
2 2, …, 4 2, …, 12# 2, …, 26# 

degradation yes yes sometimes rare 
damping none conditional yes yes 
material 

parameter none none yes yes 

complexity 3312(n-1)2 3312(n-1)2 72⋅n2 45⋅(n+2)2 

Fig. 14: Comparison of Splines with different number of 
parameters for n contact points (* partly empirical; # limited 
by the resources of the used robot) [Schmidt01]. 

5. CONCLUSIONS 
For single point contacts, CP-Move solves the direct 

and inverse manipulation problem only heuristically. An 
analytical approach for the more important inverse prob-
lem is provided by RT-Move. Additionally, RT-Move 
enables the user to specify not only qualitatively but also 
quantitatively the desired DLO motion in the contact 
points. Furthermore, RT-Move is able to reverse the 
movements and deformations of the DLO. 

For multiple points contacts, S-Move provides a very 
general and analytical solution for the inverse problem. 
The desired DLO motion S-Move can be specified quanti-
tatively. Additionally, we are able to calculate whether a 
contact is lost at one of the contact points. Finally, S-
Move can be used to solve the direct manipulation prob-
lem too [Schmidt01]. With this, S-Move provides a good 
basis for assembly tasks with wires or hoses were every 
contact of a DLO with an obstacle is regarded as a contact 
point. 

There are three further questions that are interesting to 
be examined. First, are there other functions with a better 
physical DLO approximation than Splines (e.g. weighted 
Spline interpolation or minimal energy Splines)? Second, 
how can DLOs with a curved shape be approximated 
correctly. Third, will the use (force or vision) sensors 

improve the results of the presented algorithms for multi-
ple point contacts? 
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